Copy Activity Optimization | CONFIDENTIAL

COPY ACTIVITY
OPTIMIZATION GUIDE

DIU Configuration • Parallelism • Staging • Source Optimization

Version 1.0 | January 2026

Table of Contents

1. Copy Activity Fundamentals
Copy Activity is the primary data movement component in Data Factory pipelines. Understanding its architecture and configuration options is essential for efficient data integration.
1.1 Copy Activity Architecture
1. Source Connector: Reads from data source (databases, files, APIs)
1. Data Integration Units (DIU): Compute resources for processing
1. Staging: Optional intermediate storage for transformation
1. Sink Connector: Writes to destination (Lakehouse, Warehouse, etc.)
1. Parallel Copy: Multi-threaded data transfer
1.2 Supported Connectors
	Category
	Sources
	Optimizations

	Database
	SQL Server, Oracle, MySQL, PostgreSQL
	Parallel partitions

	Cloud Storage
	Azure Blob, ADLS Gen2, S3, GCS
	Binary copy, wildcards

	Files
	CSV, Parquet, JSON, Excel, XML
	Schema mapping

	APIs/SaaS
	REST, OData, Salesforce, SAP
	Pagination

	Fabric
	Lakehouse, Warehouse, KQL
	Native connectors

1.3 Performance Factors
1. Data Volume: Total size to transfer
1. Network Bandwidth: Connection speed between source and sink
1. Source Throughput: Read capacity of source system
1. Sink Throughput: Write capacity of destination
1. Data Format: Binary (fastest) vs. text (parsing overhead)
1. Transformation: Schema mapping and type conversion

2. DIU Configuration
Data Integration Units (DIU) determine the compute resources allocated to Copy Activity. Proper DIU configuration balances performance and cost.
2.1 DIU Overview
DIU is a measure of compute power including CPU, memory, and network allocation.
1. Minimum: 2 DIU
1. Maximum: 256 DIU (cloud), varies by connector
1. Default: Auto (dynamically scales)
1. Billing: Higher DIU = higher cost
2.2 DIU Guidelines by Data Volume
	Data Volume
	Recommended DIU
	Notes

	< 100 MB
	2-4
	Low overhead, fast start

	100 MB - 1 GB
	4-16
	Moderate parallelism

	1 GB - 10 GB
	16-32
	Good balance

	10 GB - 100 GB
	32-64
	High throughput

	> 100 GB
	64-256
	Maximum throughput

2.3 Auto DIU
Auto DIU dynamically scales based on data volume:
1. Starts with minimum DIU
1. Scales up based on data processed
1. Recommended for variable workloads
1. May have slightly higher startup latency
2.4 DIU Optimization Tips
1. Start with Auto and monitor actual usage
1. Set explicit DIU for consistent, predictable workloads
1. Higher DIU doesn't always mean faster (source/sink limits)
1. Monitor DIU utilization in activity output
1. Balance cost vs. performance based on SLA
Tip: Check activity output for 'usedDataIntegrationUnits' to see actual DIU consumption.

3. Parallelism Settings
Parallel copy enables multiple threads to read/write data simultaneously, dramatically improving throughput.
3.1 Degree of Copy Parallelism
Configure maximum parallel connections to source:
// Copy Activity settings
parallelCopies: 32 // Max parallel threads
dataIntegrationUnits: 64 // Compute resources
	Setting
	Default
	Max

	Parallel Copies
	Auto (up to 32)
	256

	DIU
	Auto
	256

3.2 Database Source Partitioning
Split large tables into partitions for parallel reads:
Physical Partitions
// Use existing table partitions
partitionOption: "PhysicalPartitionsOfTable"
// Copy reads each partition in parallel
Dynamic Range
// Partition by column range
partitionOption: "DynamicRange"
partitionColumnName: "id"
partitionUpperBound: 1000000
partitionLowerBound: 1
Custom Query
// Partition with custom query
partitionOption: "DynamicRange"
query: "SELECT * FROM table WHERE ?AdfRangePartitionColumnName >= ?AdfRangePartitionLowbound
 AND ?AdfRangePartitionColumnName < ?AdfRangePartitionUpbound"
3.3 File Source Parallelism
1. Wildcard paths enable parallel file reads
1. Each file processed by separate thread
1. Use folder partitioning for large datasets
1. Binary copy avoids parsing overhead

4. Staging Configuration
Staging uses intermediate storage to improve performance and enable scenarios not supported by direct copy.
4.1 When to Use Staging
1. Large data volumes (>10GB) with format conversion
1. PolyBase-optimized loads to SQL destinations
1. Cross-region copies
1. Complex schema mappings
1. When direct copy hits connector limitations
4.2 Staging Configuration
// Enable staging
enableStaging: true
stagingSettings: {
 linkedServiceName: "StagingStorage"
 path: "staging/copy"
}
4.3 Staging Best Practices
1. Use ADLS Gen2 or Blob Storage for staging
1. Place staging in same region as destination
1. Enable compression for staging files
1. Configure retention to clean up staging data
1. Monitor staging storage costs
4.4 PolyBase Staging
For SQL-based destinations, PolyBase provides optimized bulk loading:
1. Requires staging enabled
1. Significantly faster than row-by-row inserts
1. Best for large data volumes (>1GB)
1. Supports parallel loading

5. Source-Specific Optimization
5.1 SQL Server / Azure SQL
1. Use partition option for large tables
1. Add indexes on partition columns
1. Use query with specific columns (avoid SELECT *)
1. Consider read replicas for production isolation
1. Enable compression at source
// Optimized SQL source
query: "SELECT col1, col2, col3 FROM table WHERE date >= @startDate"
partitionOption: "DynamicRange"
5.2 Azure Blob / ADLS
1. Use binary copy when format is same
1. Enable wildcard for multiple files
1. Use recursive for nested folders
1. Prefer Parquet over CSV for large datasets
1. Enable compression (gzip, snappy)
5.3 REST APIs
1. Configure pagination for large result sets
1. Use parallel requests where supported
1. Implement retry logic for transient errors
1. Cache authentication tokens
5.4 On-Premises Sources
1. Use Self-hosted Integration Runtime
1. Scale out IR nodes for parallelism
1. Optimize network connectivity
1. Consider data compression to reduce transfer time

6. Sink Optimization
6.1 Lakehouse Sink
1. Write directly to Delta for ACID guarantees
1. Use table API vs. file path for managed tables
1. Enable auto-compact for small file handling
1. Partition output by date/key columns
6.2 Warehouse Sink
1. Enable PolyBase/COPY for bulk loading
1. Use staging for best performance
1. Consider table distribution for large tables
1. Disable indexes during bulk load if possible
6.3 Write Behavior
	Behavior
	Description

	Insert
	Append rows to destination

	Upsert
	Update existing, insert new (requires key)

	Overwrite
	Replace all data in destination

6.4 Batch Size
// Configure write batch
writeBatchSize: 10000 // Rows per batch
writeBatchTimeout: "00:30:00"

7. Best Practices Summary
7.1 Performance Checklist
1. Configure DIU based on data volume
1. Enable parallel copy for large datasets
1. Use partitioning for database sources
1. Enable staging for format conversions
1. Select only required columns
1. Use appropriate file formats (Parquet > CSV)
1. Monitor and tune based on activity output
7.2 Cost Optimization
1. Use Auto DIU for variable workloads
1. Right-size DIU based on actual usage
1. Schedule large copies during off-peak
1. Clean up staging storage
1. Consider reserved capacity for predictable workloads
7.3 Reliability
1. Configure retry policies for transient failures
1. Set appropriate timeouts
1. Enable fault tolerance for file sources
1. Log copy activity output for troubleshooting
1. Implement alerting on failures
7.4 Monitoring Metrics
	Metric
	What to Monitor

	Duration
	Total time, compare against SLA

	Data Read/Written
	Volume processed, verify completeness

	Throughput
	MB/s, identify bottlenecks

	DIU Used
	Actual vs configured, optimize cost

	Rows Copied
	Compare source to destination counts

Appendix: Document Information
	Document Title
	Copy Activity Optimization Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
